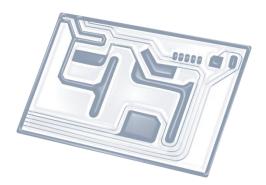


Objects as a programming concept

IB Computer Science



Content developed by **Dartford Grammar School** Computer Science Department

HL Topics 1-7, D1-4

1: System design

2: Computer Organisation

3: Networks

4: Computational thinking

5: Abstract data structures

6: Resource management

7: Control

D: OOP

HL & SL D.3 Overview

D.3 Program development

D.3.1 Define the terms: class, identifier, primitive, instance variable, parameter variable, local variable

- D.3.2 Define the terms: method, accessor, mutator, constructor, signature, return value
- D.3.3 Define the terms: private, protected, public, extends, static
- D.3.4 Describe the uses of the primitive data types and the reference class string
- D.3.5 Construct code to implement assessment statements
- D.3.6 Construct code examples related to selection statements
- D.3.7 Construct code examples related to repetition statements
- D.3.8 Construct code examples related to static arrays

D.3.9 Discuss the features of modern programming languages that enable internationalization

D.3.10 Discuss the ethical and moral obligations of programmers

2: Computer Organisation

3: Networks

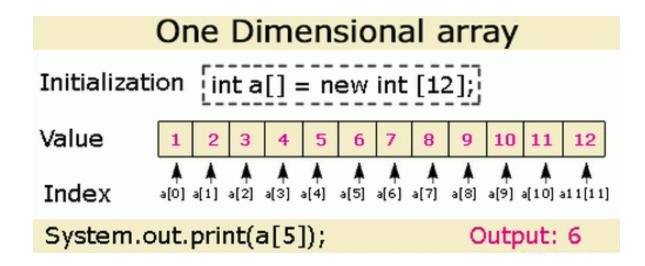
4: Computational thinking

5: Abstract data structures

6: Resource management


Ö

D: OOP



Topic D.3.8

Construct code examples related to static arrays

Arrays.

a	
CL.	a[0]
	a[1]
	a[2]
	a[3]
	a[4]
	a[5]
	a[6]
	a[7]

Practice reading from an array, moving data to/from the array, printing out selections from it... etc.

Practice, Practice, Practice!!

Compile-time initialization.

```
String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };
String[] rank =
{
    "2", "3", "4", "5", "6", "7", "8", "9", "10",
    "Jack", "Queen", "King", "Ace"
};
```


create an array with random values	<pre>double[] a = new double[N]; for (int i = 0; i < N; i++) a[i] = Math.random();</pre>
print the array values, one per line	<pre>for (int i = 0; i < N; i++) System.out.println(a[i]);</pre>
find the maximum of the array values	double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < N; i++) if (a[i] > max) max = a[i];
compute the average of the array values	<pre>double sum = 0.0; for (int i = 0; i < N; i++) sum += a[i]; double average = sum / N;</pre>
copy to another array	double[] b = new double[N]; for (int i = 0; i < N; i++) b[i] = a[i];
reverse the elements within an array	<pre>for (int i = 0; i < N/2; i++) { double temp = b[i]; b[i] = b[N-1-i]; b[N-i-1] = temp; }</pre>

Three steps to exam-prep

- Make **flashcards** of all key concepts
- Practice programming all concepts on the computer using an IDE (like Eclipse)
- Practice programming on paper (very important!)

Warning: Don't depend too much on past papers. Questions change every year and no scenario will ever repeat.

