Objects as a
programming concept

IB Computer Science

Content developed by =
Dartford Grammar School m
Computer Science Department "*4“ D

DDDDDDDDDDD

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL & SL D.3 Overview

D.3 Program development

D.3.1 Define the terms: class, identifier, primitive, instance variable, parameter variable,
local variable

D.3.2 Define the terms: method, accessor, mutator, constructor, signature, return value
D.3.3 Define the terms: private, protected, public, extends, static

D.3.4 Describe the uses of the primitive data types and the reference class string

D.3.5 Construct code to implement assessment statements

D.3.6 Construct code examples related to selection statements

D.3.7 Construct code examples related to repetition statements

D.3.8 Construct code examples related to static arrays

D.3.9 Discuss the features of modern programming languages that enable
internationalization

D.3.10 Discuss the ethical and moral obligations of programmers

2: Computer

Organisation

4: Computational

thinking

5: Abstract data

structures

6: Resource
management

D: OOP

7: Control

Topic D.3.3

Define the terms: private, protected,
public, extends, static

“My computer freezes up 3 times a day!
That’s why I don’t believe in global warming.”

B Exam note!

This curriculum point relates closely to the details

published in the JETS booklet.

You will NOT get a copy of this booklet in the Paper 2

exam.

[E—

IB Java Examination Tool Subset
(JETS)

PAN———

Operators

Boolean 1, 6 , |1 (bvisn Bockean opmrakas & , 1 e md i)

Operator precedence

precdres in e
iy uze eim pavenieses b carty el canchiates shundd ke sncousged 1 da e same b

Motation literals (values)
rTEpp———
char : 'a' // in single quotes

integor 1 123455 or -312
double : 134.75 (Eixed poinc) or 1.347EN02 (Cloating poinc)
hoaleas : true , false

‘Constant decborz il b veen i1 ALL_CAPS, using 1 undevecios fo szparnts verds ey
il e eshed ey £inal static,

Tinal Static dowble WATURAL_LOG_JATE = 2.1702019;
Primitive data types
(59 £ (0 (=50 o e

@bt and £laat we raf inchsded)

Structured data types
String ciaes

Steimdbatter clasr

Liseur Revars ¢ 1840 1 buabez - v LIELIO0:
{accey uf 100 dntepezs, iadex 0..53]

2-b arrayw: int[][]| checkers = mew int[E][#]
Tew ties (seqenrial ciies)
RunbsmkcoeseTile (E14145 48 DEIRLTIVE TIDER)

Files

Standard level/higher level

e ot ret

Lceady

Cemad
Cesadlane
“clase

-peiat
IpEantin

/¢ Serialtzacion 13 met Temeteed.
Higher level only

10
ot andomACEes3FlLe STTANg filenane, STEing accessode)
seek

+ reRSInG, vesdouble, veatByTes, ressUTT
wricelat, vritebodble, uriteByces, writeUTF

Standard methods
watn aws

EEp————ry

2, . round, . Elsar

String dass

< brconcatericn

tpas, endPos)

Ctalouertase()

LinkedList des

LinkadlieneEs whers £ defines the type of eleasnce held in the
Liar

Centiuter Lisketi e <E0)

http://ib.compscihub.net/wp-content/uploads/2015/04/JETS-Java-rules.pdf

7,
Access modifiers

Access level modifiers determine whether other classes can
use a particular field or invoke a particular method.

A class may be declared with the modifier public, in which
case that class is visible to all classes everywhere.

If a class has no modifier (i.e. the default position) it is visible
only within its own package.

There are three Java access modifiers:
public
protected

private

Definition: public

A class, method, field or constructor that is declared
public can be accessed from any other class.

Therefore, fields, methods, blocks declared inside a public

class can be accessed from any class belonging to the Java
Universe.

Because of class inheritance, all public methods and
variables of a class are inherited by its subclasses.

- Example: public

public class MathUtil {

= public double cubedRoot (int num) {
return Math.pow(num, 1.0/3):

}

public double circumference (double radius) {
return 2*Math.PI*radius;
}

= public double area (double radius) {
return Math.PI *radius¥*radius;
} —

These routines and variables can be
accessed from anywhere.

This means if you have a MathUtil
object in any other class, you can
use its public methods and
variables

} public class MyProgram {

//area of circle

with radius 3

double circlelArea math.area(3):;

public static void main(String[] args) {
MathUtil math = new MathUtil():

//cubed root of 64
float root = (float) math.cubkedRoot (64);
System.out.println("Area of circle radius 3: " + circleArea):;

System.out.println("Cubed root of 64: " + root):

@ . :
Variables
o G_)

Definition: private Clss

Methods, variables, and constructors that are declared
private can only be accessed within the declared class
itself.

private is the most restrictive access level.

Classes cannot be private, but methods and variables
can.

Variables that are declared private can be accessed
outside the class, if public getter methods are present in
the class.

Using the private modifier is the main way that an object
encapsulates itself and hides data from the outside world.

Example: private

public class Dog extends Animal {

private int numberOflLegs;
private boolean hasCwner;

= public Dog() {
numberOfLegs = 4;
hasOwner = false;

private void bark() {
System.out.println("Woof!");

public void move () {
System.out.println ("Running”);

public class Cat extends ZAnimal {

public void makeDogBark() {
Dog d = new Dog():
d.bark():

public void meow () {
System.out.println("Meow!");

public void move () {
System.out.println("Prancing"):;

f

public class Dog extends Animal {

private int numberOflegs;
private boolean hasOwner;

public Dog() {
numberOfLegs = 4;
hasCwner = false:;

public void makeDogBark() {
Dog d = new Dog():
d.bark():

-

private void bark() {
System.out.printin("Woof!");

public void move () {
System.out.println("Running”):;

7,
Definition: protected

Variables, methods, and constructors, which are declared
protected in a superclass can be accessed only by the

subclasses in any class within the package of the protected
members' class.

protected cannot be applied to classes.

protected access gives the subclass a chance to use the

helper method or variable, while preventing a nonrelated
class from trying to use it.

class Book

— o e e e o mmm e mmm mm— mm

package mytools.text

public class TextArea

private char [] text;

int linecount; // default =

visible

public class TextEditor

// visibility

protected void formatText();

visible

public void getText();

visible

public void setText();

class MyTextDisplay
extends TextArea

vy

Example 2: protected

public class Dog extends Animal {

Wl private int numberOfLegs;
wh private boolean hasOwner;

= public Dog() {
numberOfLegs = 4;
public abstract class Animal { hasOwner = false;

[

public boolean isAPet = true; S public void makeDogBark() {
X - Dog d = new Dog();
public String owner = "Fred"; d PATELN:

S public void sleep() {

= public void makeDogEat () {

System.out.println("Sleeping”); eat();
3
}
private void bark() {
K System.out.println("Woof!");
= protected void eat () { y

System.out.println("Eating"):
a g public void move() {
System.out.println("Running");

[

}

public abstract void move(): }
public class Chair {

- public void makeAnimalEat () {

Dog d = new Dog():
d.gat():

@ See D.2.2

Definition: extends

extends is the keyword used in a sub class to inherit the
properties of a super class

Example: extends

class Calculation {
int z;

public wvoid addition(int =, int y) {
z=x+Yy;
System.out.println{"The sum o

=

the given numbers:“+z);

b

public weoid Subtractien{int x=, int y) {
£Z=X-Y¥
System.out.println{"The difference between the given numbers:"+z);

¥

public class My Calculation extends Calculation {

public woid multiplication(int x, int y) {
=X y;
System.out.println{"The product of the given numbers:"+z);

¥

public static wveid main{5tring args[]) {

int a = 28, b = 18;

My Calculation demo = new My Calculation();
demo.addition(a, b);

demo.Subtraction(a, b);
demo.multiplication{a, b);

7,
Definition: static

staticis a non-access modifier in Java which is applicable for
the following:

blocks
variables
methods
nested classes

To create a static member (variable, method, etc.), precede its
declaration with the keyword static.

static variables are used for any property that is common to
all objects of that type.

Example 1: static

class Student8{
int rollno;
String name;

static String college ="ITS";

class Student{ Student8(int r,String n){
. rollno = r;
int rollno;
name = n;
String name; 3
String CD”EQE:”ITS"; void display (){System.out.printin{rellno+" "+name+" "+college);

public static void main(String args[]}1{
Student8 s1 = new Student8(111,"Karan"};

Student8 s2 = new Student8(222 "Aryan");

s1.display(); Output:111 Karan ITS
s2.display(};

, 222 Aryan IT5
¥

Example 2: static

college=ITS
Class Area
id=222;
name=Aryan;
id=111;
s2
// name=Karan;)
sl
//
/’/

Stack Memory

Heap Memory

More on static

Declares a static member of a class that will be the same for
all members.

The static keyword in Java means that the variable or
function is shared between all instances of that class as it
belongs to the type, not the actual objects themselves.

So if you have a variable: private static int i = 0; and you
increment it (i++) in one instance, the change will be
reflected in all instances.

Also see: http://www.javatpoint.com/static-keyword-in-java

http://www.javatpoint.com/static-keyword-in-java

Summary of access modifiers

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y
no modifier Y Y _

* The first data column indicates whether the class itself has access to the member
defined by the access level - a class always has access to its own members.

* The second column indicates whether classes in the same package as the class have
access to the member.

* The third column indicates whether subclasses of the class declared outside this
package have access to the member.

* The fourth column indicates whether all classes have access to the member.

