Features of OOP

IB Computer Science

Content developed by
Dartford Grammar School
Computer Science Department

)

FOUNDED 1576

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL & SL D.2 Overview

D.2 Features of OOP

D.2.1 Define the term encapsulation

D.2.2 Define the term inheritance

D.2.3 Define the term polymorphism

D.2.4 Explain the advantages of encapsulation

D.2.5 Explain the advantages of inheritance

D.2.6 Explain the advantages of polymorphism
D.2.7 Describe the advantages of libraries of objects
D.2.8 Describe the disadvantages of OOP

D.2.9 Discuss the use of programming teams

D.2.10 Explain the advantages of modularity in program development

2: Computer

Organisation

4: Computational

thinking

5: Abstract data

structures

6: Resource
management

D: OOP

7: Control

Topic D.2.1

Define the term: encapsulation

Encapsulation

methods

variables P Class

b,
Four OOP fundamentals:

Abstraction (see Topic 4.1.17-20)

Polymorphism (see Topic D.2.3&6)

Inheritance (see Topic D.2.2&5)

Encapsulation (see Topic D.2.184)

l‘\

o o

Definition: Encapsulation

Encapsulation is the technique of making the
states in a class private and providing access
to those states via public behaviours
(methods).

In short: data and actions are limited to the
object in which they are created

D

7,
Encapsulation = Data Hiding

If a state is declared private, it cannot be accessed
by any method outside the class, thereby hiding the
states (and their contents) within the class.

For this reason, encapsulation is also referred to as
data hiding.

Encapsulation and Data Hiding

Private :
Restricted access from
outside class

Public:
Can access anywhere
through Class Object

Example: UML

@ name: String
topSpeed : double
. Car(String)
getName() : String

o
&
@
@ @ setName(String) : voia
=
&
@

setTopSpeed(double) : void
getTopSpeedMPH() : double
getTopSpeedKMH() : double

Example: Java

oodoUd WNH

10

12
13.
14.
15
16.

class Student({
private String name;
public String getName () {

}

return name;

public void setName (String newName) {

}
}

name = newName;

.class Execute{

publi

The public methods are the access points to a
class's private fields(attributes) from the
outside class.

(1) {

localName = sl.getName() ;

Side note: Java keyword this

Within a method/constructor, this is a reference to the

current object (the object whose method/constructor is being
called)

public class Point { public class Point {
public int x = 0; public int x = 0;
public int y = 0; public int y = 0;
/ /constructor //constructor
public Point(int a, int b){ public Peint (int x, int y) {
x = a; this.x = x;
y = b; this.y = y;
} }
} }

Example of non-encapsulation: Java

4 class Employeeq{
5 Integer id; //No encapsulation - field isn't private
5}
7
. 8 /** JavaMadeSoEasy.com */

- 9 public class EncapsulationTest {

5 public static void main(S5tring[] args) {
Employee emp=new Employee();
emp.id="1"; //As field isn't private, it could be accessed cutside class.

¥

This is potentially very dangerous as methods outside the class
can directly change an object’s state values.

