Objects as a
programming concept

IB Computer Science

Content developed by =
Dartford Grammar School m
Computer Science Department "*4“ D

DDDDDDDDDDD

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL & SL D.1 Overview

D.1 Objects as a programming concept

D.1.1 Outline the general nature of an object

D.1.2 Distinguish between an object (definition, template or class) and instantiation
D.1.3 Construct unified modelling language (UML) diagrams to represent object designs
D.1.4 Interpret UML diagrams

D.1.5 Describe the process of decomposition into several related objects

D.1.6 Describe the relationships between objects for a given problem

D.1.7 Outline the need to reduce dependencies between objects in a given problem
D.1.8 Construct related objects for a given problem

D.1.9 Explain the need for different data types to represent data items

D.1.10 Describe how data items can be passed to and from actions as parameters

2: Computer
Organisation

4: Computational

thinking

5: Abstract data

structures

6: Resource
management

D: OOP

7: Control

Topic D.1.6

Describe the relationship between
objects for a given problem

...... S~ — et
I< H TR - e B s <
H—>06+ O—O6+ H———H e
o—e< 10 € - —t

You H O€ --m-mmmeee- @ ° |

Four types of relationships

There are four main types of relationships between objects:

Dependency — “uses” &===-=-

Aggregation — “has @" —>
Inheritance — “is a” e
Association — “uses”’ =———

Comparison

Generally speaking, Association is the most generic
relationship. The other three are more specific and are used in
particular situations.

Association ClassA r=lafed ClassB
Aggregation Whole [£> Prt
Dependency |DependertPat | — — — 4‘[RequiredPart |
Inheritance Superclass k]_l Subclass

Key concepts: Dependency

We use a dependency relationship to show when one
element depends on another element.

It points from the independent entity to the dependent
entity in the system.

This is a unidirectional kind of relationship between two
objects.

Example: Dependency

In the figure below, an object of Player class is dependent
(or “uses”) an object of Bat class.

Playeri: Player Mongoose: Bat
+ Sport: Cricket + Weight: 1.25 kg
Lise
+ Genjer |".."|EI|E I'-I-+-I-+-I--I--I--I--I--I-+-I--I--I--I--I--I--I--I-+-I-+-I-+++++++++++++++++++++++} + HE|QI'|1: ?E .I:|"l'|

+ Age: 23 + width: 2 Inches

Key points: Association

Association is relation between two separate classes which
establishes through their Objects.

Association can be one-to-one, one-to-many, many-to-one,
many-to-many.

In Object-Oriented programming, an Object communicates
to other Object to use functionality and services provided by
that object.

Aggregation is a particular type of Association.

—

Example: Association

f/ Java program to illustrate the // employee class
// concept of Association class Employee
import java.lo.¥; {

/el bank private String name;
class ban

class Bank // employee name

1 .
private 5tring name; ?mplnyEE(Strlng name)
// bank name this.name = name;
Bank{5tring name) h
{ this.name = name; public String getEmployeeMame()
¥ {
return this.name;
public String getBankName () T
{
return this.name;
h
I

Example: Association

// Association between both the
J/ classes in main method
class Association

1
public static wvoid main (String[] args)
{
Bank bank = new Bank({"Axis");
Employee emp = new Employee("MNeha™);
System.out.println({emp.getEmployeeName() +
" iz employee of " + bank.getBankMame{));
¥

Association vs Dependency

Association and dependency are often confused in their
usage.

There are a large number of dependencies in a system.

We only represent the ones which are essential to convey
for understanding the system.

We need to understand that every association implies a
dependency itself.

However, we prefer not to draw it separately.

€<---- —

Key points: Aggregation

It is a special form of Association where:
It represents “has a” relationship.

It is a unidirectional association i.e. a one way relationship.
For example, department can have students but vice versa is
not possible and thus unidirectional in nature.

In Aggregation, both the entries can survive
individually which means ending one entity will not effect

the other entity

_0

Example: Aggregation

// Java program to illustrate
//the concept of Aggregation.
import java.io.®;

import java.util.®;

Jf student class
class Student

{

String name;
int id ;
String dept;

Student(S5tring name, int id, String dept)

{

this.name = nams;
this.id = id;
this.dept = dept;

/* Department class contains list of student
Objects. It is associated with student

class through its Object(s). */

class Department

1

String name;
private List<Student> students;
Department({String name, List<Student: students)

this.nams = nams;
this.students = students;

¥
public List<5tudent> getStudents()
{
return students;
¥

Example: Aggregation

/* Institute class contains list of Department
Objects. It is asoociated with Department
class through its Object(s).*/

class Institute

1
String instituteMame;
private List<Department:> departments;
Institute(String instituteMame, List<Department:> departments)
{
this.instituteName = institutslame;
this.departments = departments;
¥
ff count total students of all departments
Jf in a given institute
public int getTotalStudentsInInstitute()
{
int no0Ofstudentz = @3
List«<5tudents students;
for{Department dept : departments)
students = dept.getStudents();
for{Student = : students)
no0fStudents++;
¥
return noOfstudents;
¥
¥

Example: Aggregation

/f main method
class GFG

public static woid main (String[] args)

{

Student 51 = new Student("Mia", 1, "CS5E™);

Student 52 = new Student("Priya", 2, "CSE");

Student 53 = new Student(“Jchn™, 1, “EE™);
("

Student s4 = pew Student("Rahul", 2, "EE");

ff making a List of

f/ CSE Students.

List «Student: cse_students = new Arraylist<Student>();
cse_students.add(sl);

cse_students.add(s2);

ff making a List of

// EE Students

List <Student» ee_students = new Arraylist<Student>();
ee_students.add(s3);

ez _students.add(s4);

Department CSE = new Department("CSE", cse_students);
Department EE = new Department("EE", ee_students);

List <Department> departments = new ArraylList<Department>();
departments.add(CSE);
departments.add(EE);

/f creating an instance of Institute.
Institute institute = new Institute("BITS", departments);

System.out.print{"Total students in institute: “);
System.out.print{institute.getTotalstudentsInInstitute());

Institute

Department

Student

Key points: Inheritance

Inheritance is the mechanism by which one class is allow to
inherit the features (states and behaviours) of another class.

Super Class: The class whose features are inherited is known
as super class (or a base class or a parent class).

Sub Class: The class that inherits the other class is known as
sub class (or a derived class, extended class, or child class).
The subclass can add its own states and behaviours in
addition to the superclass states and behaviours.

—>

Example: Inheritance

JfJava program to illustrate the
/! concept of inheritance

/! base class
class Bicycle

1

f/ the Bicycle class has two fields
public int gear;
public int speed;
// the Bicycle class has one constructor
public Bicycle(int gear, int speed)
{

this.gear = gear;

this.speed = speed;
¥
ff the Bicycle class has three methods
public woid applyBrake({int decrement)
{

cpeed -= decrement;
¥
public wvoid speedUp{int increment)
{

speed += increment;
¥
ff toString() method to print info of Bicycle
public String toString()
{

return{"No of gears are "+gear

£ nt
+ "speed of bicycle iz "+speed);
¥
h

// derived class
class MountainBike extends Bicycle

/f the MountainBike =subclass adds one more fiesld
public int seatHeight;

/f the MountainBikes =subclass has one constructor
public MountainBike(int gear,int speed,
int startHeight)

ff invoking base-class{Bicycle) constructor
super(gear, speed);
ceatHeight = startHeight;

¥

/f the MountainBikes subclass adds one more method
public void setHeight{int newValue)

{
¥

ff overriding toString() method
ff of Bicycle to print more info
@override

public String toString()

{

seatHeight = newValue;

return {super.toString()+
"“nseat height is "#seatHeight);

Example: Inheritance

// driver class
public class Test

{

public static wvoid main(String args[])

{

MountainBike mb = new MountainBike(3, 1@&, 25);
System.out.println{mb.toString());

int gear
int speed }copy of Bicycle methods and
applyBrake() fields in MountainBike object
speedUp()
toString()

» objects of MountainBike class

int seatHeight

setHeight()
toString()

(b)

(c)
(d)

v
I o . v
Exam style question: v
State the relationship between the Genus and Species objects. [1]
State the relationship between the Species and Specimen objects. [1]
Construct the unified modelling language (UML) diagram for the Species object. f4]

Outline two ways in which the programming team can benefit from the way the
relationships between the three objects. Specimen. Species and Genus. have been
represented in the code. [4]

Important to note:
v" Know how to identify relationships both in UML and Java.
v" The two big ones is inheritance (“is a”) and dependence (“uses a”)

v" Know WHY we use these relationships

http://icons.iconarchive.com/icons/custom-icon-design/pretty-office-10/128/Test-paper-icon.png

