
IB Computer Science DGS Computer Science Dept

HL/SL IA: How to get marks for ‘complexity’

In 2014 the Computer Science was dramatically updated, but we are still coding Java and bits that were complex before, appear to still count as ‘complex’.
The rule of thumb used to be that a HL project had to have at least 10 of the following 18 aspects to be counted as ‘sufficiently complicated’. They are:

1. Adding data to an instance of the RandomAccessFile class by direct manipulation of the file pointer using the seek method

2. Deleting data from an instance of the RandomAccessFile class by direct manipulation of the file pointer using the seek method. (Data primitives or
objects may be shuffled or marked as deleted by use of a flag field. Therefore files may be ordered or unordered)

3. Searching for specified data in a file

4. Recursion

5. Merging two or more sorted data structures

6. Polymorphism

7. Inheritance

8. Encapsulation

9. Parsing a text file or other data stream

10. Implementing a hierarchical composite data structure. A composite data structure in this definition is a class implementing a record style data
structure. A hierarchical composite data structure is one that contains more than one element and at least one of the elements is a composite data
structure. Examples are, an array or linked list of records, a record that has one field that is another record, or an array

11.Use of additional libraries (such as utilities and graphical libraries not included in appendix 2 Java Examination Tool Subsets)

12. Inserting data into an ordered sequential file without reading the entire file into RAM

13. Deleting data from a sequential file without reading the entire file into RAM

14. Arrays of two or more dimensions.

IB Computer Science DGS Computer Science Dept

15.to 18. Up to four aspects can be awarded for the implementation of abstract data types (ADTs)

ADT Name 1 aspect 2 aspects 3 aspects 4 aspects

General criteria
An incomplete ADT is

implemented.

An ADT is implemented
with all key methods

implemented.

An ADT is implemented that
includes some error checking.

An ADT is implemented completely
and robustly.

Lists, implemented
using references (such

as, a dynamically linked
list).

A node style class with
appropriate constructors

and methods to set and get
data elements.

Methods are
implemented to add at /

remove from the tail
and the head of the list.

Proper checks are made for
errors such as attempting to

get an element from an empty
list or inserting the same

element twice.

All error conditions are checked for,
and all appropriate methods are

implemented. For a doubly linked list
these could be:

size, isEmpty, first, last,

before, after, insertHead,

insertTail, insertBefore

insertAfter

Tree (simple, ordered
binary tree is sufficient

using arrays or
dynamically linked
object instances)

A class or interface with
appropriate constructors

and methods to set and get
data elements.

Methods are
implemented to add at /

remove from the
correct point in the

tree.

Proper checks are made for
errors such as attempting to

get an element from an empty
tree or not inserting the same

element twice.

All error conditions are checked for, all
appropriate methods are

implemented. For a simple ordered,
binary tree these could be:

size, isEmpty, root, parent

leftChild, rightChild

Stack implemented
dynamically or

statically.

A class or interface with
appropriate constructors
and methods to push and

pop items.

Methods to test for full
and empty stack are

added.

Proper checks are made for
errors such as attempting to

get an element from an empty
stack.

Probable methods
push, pop, top, isEmpty

isFull, size

Queue implemented
dynamically or statically

A class or interface with
appropriate constructors
and methods to enqueue

and dequeue items.

Methods to test for full
and empty queue are

added.

Proper checks are made for
errors such as attempting to

get an element from an empty
queue.

Probable methods
enqueue, dequeue

front, rear, isEmpty, isFull,

size

Hash table
implemented in an

array.

A class or interface with
appropriate constructors

and methods to insert and
remove items.

Methods to test for full
table and duplicate keys

are added.

Proper checks are made for
errors such as attempting to

get a non-existent key, clashes
are dealt with properly

Probable methods
hashFunction, insertKey

removeKey, isDuplicate

isEmpty, isFull, size

The “Non-trivial” principle means that the programmer must demonstrate that the program benefits from the use of the aspect.

Where one aspect includes others, all are credited (always provided that the use is non-trivial, well-documented and appropriate).

IB Computer Science DGS Computer Science Dept

Standard Level

The rules are slightly different for SL. The rule of thumb used to be that a project had to have at least 10 of the following 15 aspects to be counted as
‘sufficiently complicated’. They are

1. Arrays

2. User-defined objects

3. Objects as data records

4. Simple selection (if–else)

5. Complex selection (nested if, if with multiple conditions or switch)

6. Loops

7. Nested loops

8. User-defined methods

9. User-defined methods with parameters (the parameters have to be useful and used within the method body)

10. User-defined methods with appropriate return values (primitives or objects)

11. Sorting

12. Searching

13. File i/o

14. Use of additional libraries (such as utilities and graphical libraries not included in appendix 2 Java Examination Tool Subsets)

15. Use of sentinels or flags

