
IB Computer Science

Content developed by
Dartford Grammar School

Computer Science Department

Advanced program
development

Content developed by Dartford Grammar School Computer Science Department

1: System design 2: Computer
Organisation

3: Networks 4: Computational
thinking

5: Abstract data
structures

6: Resource
management

7: Control D: OOP

HL Topics 1-7, D1-4

Content developed by Dartford Grammar School Computer Science Department

1: System design

2: Computer
Organisation

3: Networks

4: Computational
thinking

5: Abstract data
structures

6: Resource
management

7: Control

D: OOP

HL only D.4 Overview
D.4 Advanced program development

D.4.1 Define the term recursion

D.4.2 Describe the application of recursive algorithms

D.4.3 Construct algorithms that use recursion

D.4.4 Trace recursive algorithms

D.4.5 Define the term object reference

D.4.6 Construct algorithms that use reference mechanisms

D.4.7 Identify the features of the abstract data type (ADT) list

D.4.8 Describe applications of lists

D.4.9 Construct algorithms using a static implementation of a list

D.4.10 Construct list algorithms using object references

D.4.11 Construct algorithms using the standard library collections included in JETS

D.4.12 Trace algorithms using the implementations described in assessment statements D.4.9–
D.4.11.

D.4.13 Explain the advantages of using library collections

D.4.14 Outline the features of ADT’s stack, queue and binary tree

D.4.15 Explain the importance of style and naming conventions in code

Content developed by Dartford Grammar School Computer Science Department

Topic D.4.1

Define the term: recursion

Content developed by Dartford Grammar School Computer Science Department

Recursion

• Recursion is a process
in which a function
calls itself as a
subroutine.

• This allows the
function to be
repeated several
times, since it calls
itself during its
execution.

Content developed by Dartford Grammar School Computer Science Department

The Classic Example: n!

• n! calculates the factorial of an integer

• E.g. 4! = 4 x 3 x 2 x 1 = 24

Content developed by Dartford Grammar School Computer Science Department

Videos to watch on YouTube

https://www.youtube.com/watch?v=Mv9NEXX1VHc

https://www.youtube.com/watch?v=Mv9NEXX1VHc

Content developed by Dartford Grammar School Computer Science Department

What will this do?

public static int factorial(int N)

{

if (N == 1)

{

return 1;

}

return N * factorial(N-1);

}

Content developed by Dartford Grammar School Computer Science Department

Another example

class Factorial {

int fact(int n) {

int result;

if (n ==1) return 1;

result = fact (n-1) * n;

return result;

}

}

Content developed by Dartford Grammar School Computer Science Department

Task:

Find advantages and disadvantages to recursion

Content developed by Dartford Grammar School Computer Science Department

Possible answer

• Recursive versions of many routines may execute a bit more
slowly than the iterative equivalent because of the added
overhead of the additional function calls.

• Many recursive calls to a method could cause a stack overrun.
Because storage for parameters and local variables, it is possible
that the stack could be exhausted. If this occurs, the java run-time
system will cause an exception. However, you probably will not
have to worry about this unless a recursive routine runs wild.

• The main advantage to recursive methods is that they can be used
to create clearer and simpler versions of several algorithms than
can their iterative relatives. For example, the QuickSort sorting
algorithm is quite difficult to implement in an iterative way.

Content developed by Dartford Grammar School Computer Science Department

Possible exam type questions

