Computational thinking,
problem-solving and programming:

Connecting computational thinking and program design

IB Computer Science

QO Content developed by
' \O Dartford Grammar School {R'§)
\}O Computer Science Department

FOUNDED 1576



—
2: Computer 3: Networks 4: Computational
Organisation thinking

5: Abstract data 6: Resource 7: Control D: OOP
structures management




HL & SL 4.2 Overview

4.2.1 Describe the characteristics of standard algorithms on linear arrays
4.2.2 Outline the standard operations of collections

4.2.3 Discuss an algorithm to solve a specific problem

4.2.4 Analyse an algorithm presented as a flow chart

4.2.5 Analyse an algorithm presented as pseudocode

4.2.6 Construct pseudocode to represent an algorithm

4.2.7 Suggest suitable algorithms to solve a specific problem

4.2.8 Deduce the efficiency of an algorithm in the context of its use

4.2.9 Determine the number of times a step in an algorithm will be performed for given
input data

2: Computer
Organisation

3: Networks

4: Computational ¢
thinking =

5: Abstract data
structures

6: Resource
management

7: Control



Topic 4.2.4

Analyse an algorithm presented as a
flow chart

How To Play Pictionary

DPRAW A PICTURE

l

. POINT REPEATEDLY
You Win, — —
€—Yes No=—>| 70 THE SAME PICTURE

1




Teacher’s not es

Examination questions may involve variables,
calculations, simple and nested loops, simple
conditionals and multiple or nested conditionals.

This would include tracing an algorithm as well as
assessing its correctness.

Students will not be expected to construct a flow
chart to represent an algorithm in an exam.

&

Nﬁj\f l



Make sure you know the symbols

These flowchart shapes are internationally recognised, so we
must use them and NOT invent our own ones!

]
4

Terminator; This either contains START or END, and only one
of each exists in a flowchart. They specify where the start
and end of a flowchart is.

Input/output; We use this shape to show that something is
going IN or OUT of the system we are designing. For
example, we put a tea baginto a cup.

Process; We use this to show that something is happening.
So, if | was to walk five steps forward, that is a process. It
can't be an output or input as nothing is going in or out!

Decision; Decisions are used when we need to make a
choice. Decisions MUST have two exits, one labelled YES and
one NO. They are the only shape that has two exits. For
example, “Is the kettle boiled?” This is either a YES or a NO...



Example 1 - Getting a book out of a backpack. Explained

| start all flowcharts with the

TERMINATOR symbol. It only ever
contains the word “START".

Notice how the FLOW of logic is
‘| reprasented by arrows... the logic here

is going FROM ‘Start’ TO ‘Open zip'.

Opening the zip is a PROCESS, so | use
the square here.

Remove book

from bag Removing the book is an OUTPUT from

the system, so it uses the
parallelogram shape.

| finish all flowcharts with the TERMINATOR

symbol. It only ever contains the word “END".
Remember | only have one of these in a
flowchart. All routes must end up here!




Example 2 — Determine if | have picked up a red pencil. Explained

Notice how decision boxes hawve two arrows

leaving. One is always YES and one is always NO. If the pencil was red in my decision... so
They correspond to the route that should be “YES; it was red” then | follow the YES path
taken depending upon the decision. out of the decision and end up here!

PR Wp a gl i

ZEIE Say “The
pencil is red.”

Say “The pencil
is not red.”

| cannot assume what colour the pencil
is, so | must start be making a
decision... is it RED? YES or NO?

If the pencil was not red in my decision... so
“NQ; it was not red” then | follow the NO

path out of the decision and end up here!




See theflowchart notes on IB CompSci

By M.K. Lowe




. Approved notation for developing
pseudocode

Of ficially foro.

Operation Flowchart example Pseudocode example
sequential l
operations

perform taskl

¢ perform task1

perform task2 perform task2

v

conditional
operations NO
if MAX = 0 then
output “positive”
output “positive” output “not positive” else

output “not positive”

end if




while-loop

YES

NO

COUNT=COUNT +1

loop while COUNT < 15
COUNT = COUNT + 1

end loop

from/to-loop

v

COUNT =0

2

S5UM =5SUM + COUNT

'

COUNT = COUNT + 1

NO

loop COUNT from 0 to 5
SUM = SUM + COUNT

end loop

You get this in the exam




