-D—Object-oriented programming

Notes by Dave Mulkey, 2015, Germany

D.1 Objects as a programming concept (6 hours)

The paradigm of object-oriented programming should be introduced through discussion and example.

Assessment statement | Ivl | Teacher’s notes Explanations

D.1.1 | Outline the general 2 | An object as an abstract entity and its An OBJECT contains VARIABLES = PROPERTIES

nature of an object. components—data and actions. and METHODS = BEHAVIORS.
Familiar examples from different domains
might be people, cars, fractions, dates and
music tracks.

D.1.2 | Distinguish between an 2 Students must understand the difference In Java, an OBJECT is an INSTANCE of a CLASS.
object (definition, in terms of code definitions, memory use We can make lots of OBJECTS from the same CLASS.
template or class) and and the potential creation of multiple Each OBJECT requires some memory to store it's details.
instantiation. instantiated objects. Each OBJECT has it's own copy of its VARIABLES

and its own copy of the class METHODS.

But, if the METHODS or VARIABLES are STATIC,
then there is only one copy of the method or variable,
and all the OBJECTS share the same copy .

D.1.3 | Construct unified 3 LINK Connecting computational thinking UML diagrams show:
modelling language and program design. + +
(UML) diagrams to | CLASS NAME |
represent object | |
designs. Variable names |

I

I I
| Method signatures |
I

I

I
Dependencies |
+ +

Example about Vehicles

http://spacecraft.sourceforge.net/doc/api/ExampleUML.jpg

D.1.4

Interpret UML diagrams.

LINK Connecting computational thinking
and program design.

Library Diagram
Shoppin
Placing Orders

D.1.5 | Describe the process of A simple example with 3-5 objects is OOP Design Notes
decomposition into suggested. Examples related to D.1.1
several related objects. could be employers, traffic simulation
models, calculators, calendars, media
collections.
LINK Thinking abstractly.
AIM 4 Applying thinking skills critically to
decompose scenarios.
D.1.6 | Describe the The relationships that should be known An example using Busses
relationships between are dependency (“‘uses”), aggregation - dependency = a Bus USES roads (depends on)
objects for a given (“has a”) and inheritance (“is a”). - aggregation = a Bus HAS seats (contains)
problem. LINK Thinking abstractly. - inheritance = a Bus IS A vehicle (extends)
AIM 4 Applying thinking skills critically to and hence has an engine, like all vehicles
decompose scenarios.
An example using Students
- dependency = a Student USES a school
- aggregation = a Student HAS hands
- inheritance = a Student IS A person, and hence has a name
D.1.7 | Outline the need to Students should understand that It is desirable for Objects (classes) to be "self-contained".

reduce dependencies
between objects in a
given problem.

dependencies increase maintenance
overheads.

This is partially achieved through ENCAPSULATION -

that means putting all the DATA and METHODS inside the
Object (class). If we DEPEND on another class to provide
useful methods, then we must be sure to have the class/Object
available whenever we use our Object.

For example, if we have an Employee Object containing name,
phone, etc about the employee, the program will need to

http://3.bp.blogspot.com/-ksnyYzdZg4o/T5Yuns7yEFI/AAAAAAAAAT0/iEZJFel1GFA/s640/uml+class+diagram+library+mgmt.JPG
http://www.alasdairking.me.uk/research/images/UMLClassDiagram.gif
http://www.grafpad.com/grafpad/static/main_layout/uml-class-diagram-screenshot.png
https://dl.dropboxusercontent.com/u/275979/ibcomp/review/DesignOOP2.pdf

SAVE that data in a disk file. If we include the SAVE method
inside the Employee Object, then it is simpler to use than
expecting some external methods to take care of SAVING
data. And if some other programmer changes the SAVE
method that is somewhere else, we cannot be sure that it will
work well.

This is related to choosing where RESPONSIBILITIES are
placed in a computer system.

D.1.8 | Construct related objects In examinations problems will require the See example Object Hierarchies, like the BUSSES in the
for a given problem. students to construct definitions for no Specimen Paper 2.
more than three objects and to explain
their relationships to each other and to any
additional classes defined by the
examiners.
LINK Connecting computational thinking
and program design.
AIM 4 Applying thinking and algorithmic
skills to resolve problems.
D.1.9 | Explain the need for The data types will be restricted to integer, | integer = whole numbers (Java int)
different data types to real, string and Boolean. real = floating point, decimals (Java double or float)
represent data items. string = text data, characters (Java String)
Boolean = true/false (Java boolean)
It is actually possible to store numeric values in String
variables, but this is inefficient. Adding up 1 million numbers
would then require 1 million conversions from String to double.
D.1. Describe how data items Parameters will be restricted to look at many Java examples
10 can be passed to and pass-by-value of one of the four types in

from actions as
parameters.

D.1.6. Actions may return at most one data
item.

Pass-By-Value means that the value is copied from the main
program into the parameter(s). If the value of a parameter is

changed inside a method, that change does NOT effect the
original values in the main program.

A Pass-By-Value (or reference) parameter does NOT have it's
value copied into the parameter, but rather the MEMORY
LOCATION (reference/pointer) is copied. That means the
method CAN change the values in the variables in the main
program.

D.2 Features of OOP (4 hours)

Students should be able to describe the features of OOP that distinguish it from other approaches to computer programming.

polymorphism.

parameter lists and processes.

Assessment Iv | Teacher’s notes
statement |
D.2.1 Define the term 1 | Data and actions are limited to the object in This is accomplished by:
encapsulation. which they are defined. - putting all DATA (properties/variables) and all METHODS
inside the Object / class
- using PRIVATE variables, accessed through public GET-
and SET- methods
D.2.2 Define the term 1 | A parent object holds common data and This involves
inheritance. actions for a group of related child objects. - making an original Object/class
Multiple inheritance is not required. - EXTENDING the class to create a new Object/class with
more properties and methods
- during inheritance, the new class can OVER-RIDE the
old properties and methods in the original class
See examples in Java programs
D.2.3 Define the term 1 | Actions have the same name but different There can be several methods (different versions) with the

same name. If these are in the same class, then they must
have different SIGNATURES (parameter lists), so that the
compiler can tell which version to use. If the various versions

are in different classes, then they could have the same
parameter lists and will be selected by the compiler according
to the class currently in use.

D.2.4

Explain the
advantages of

encapsulation.

For example, the scope of data should be
confined to the object in which it is defined as
far as possible in order to limit side effects
and dependencies.

Encapsulation ensures that

- variables (properties) are not accidentally changed by
another part of the program

- the correct methods are used, rather than accidentally using
another method with the same name that is outside the class

This is particularly important in a team-programming project,
where various parts of a computer system are created by many
different people. Although good communication and
documentation could prevent many accidents, Encapsulation
enforces restrictions at the compiler level.

D.2.5

Explain the
advantages of
inheritance.

For example, a parent object holds common
data and actions, which enhances reuse and
reduces maintenance overheads.

This is especially useful in team-programming projects. It
means that a parent (basic) object could be changed
(improved) and those changes would immediately be availble
in the child (extended) objects. For example, if a better sorting
algorithm is created in the parent object, it can immediately be
used by the child objects. The compiler makes the
improvements automatically, without the programmers passing
around copies of the new sorting method.

D.2.6

Explain the
advantages of

polymorphism.

For example, an action in a child object may
choose to override actions of a parent object.
This allows an external program to use the
same action on a family of objects without
knowing the implementation detail.

Consider a school database containing these Obijects:
Person (name, phone, etc)
- Student extends person (adding homeroom, bus route...)
- Teacher extends person (adding room, subject, etc)
Now an END_OF_YEAR method can be constructed that
sends an eMail to each Student reminding them to turn in all
their books. A different END_OF_YEAR method for a Teacher

might send an email reminding them about important work they
should do during the vacation (no work for the Students!)
Although it is tricky to program in Java, it's possible to make a
loop that goes through all the Person Objects, sending the
appropriate EMAIL by using the END_OF_YEAR method in
that Object. It's not necessary for the main program to know
which EMAIL will be sent - it simply INVOKES the
END_OF_YEAR method contained in each Object.

D.2.7 Describe the For example, sorts and other complex A very simple example is all the GUI control Objects available
advantages of algorithms and processes do not have to be from the javax.swing library. We don't want every programmer
libraries of objects. “re-invented”. to write their own code to draw a jButton and all its associated

methods (like resize). This library has been built, debugged
and documented through great time and expense by the
system programmers at SUN. Another example would be a
3rd-party library that draws 2D and 3D mathematical graphs.
No need for every mathematics programmer to write all this
code again. For example, the algorithm to draw a straight line
from one point to another, choosing exactly the correct pixels,
is a complex and difficult problem.

D.2.8 Describe the For example, increased complexity for small If you just need a program that adds up an Arithmetic
disadvantages of problems; unsuited to particular classes of Progression, e.g. 1+3+5+...4999999 | this can be written as a
OOP. problem. simple loop that prints the answer on the console (CLI =

AIM 9 Develop an appreciation of the Command Line Interface). There is no need for the complexity

limitations of OOP. involved in OOP. OOP mainly creates modules (classes) that
are RE-USABLE. So "one-off" programs that will be written,
used and thrown away won't benefit from OOP techniques.

D.2.9 Discuss the use of As compared to individuals working alone. "Divide and conquer” - clearly a team of 100 programmers

programming teams.

Examples include speed to completion,
information hiding to reduce module

should finish a program more quickly than one lone
programmer - ESPECIALLY IF the program is a large system,

dependencies, expertise in narrow fields (eg
testing, documentation), etc.

INT, AIM 5 The need to develop a common
“language” to enable collaboration across
international frontiers when resolving
problems.

like an email server and client. There are many thousands of
lines of code needed, and a single programmer is going to
spend a long time typing all those lines of code. This also
requires the lone programmer to know an awful lot about email
systems, and he/she may be missing some crucial knowledge.
With a team of programmers, we are more likely to have a
larger collection of knowledge. And if some crucial knowledge
or skills are missing, we can always higher another
programmer(s) to fill in the missing bits.

D.2.10

Explain the
advantages of
modularity in
program
development.

Advantages include easier debugging and
testing, speedier completion, etc.

OOP improves modularity by breaking the program/system into

separate pieces, coded as separate Classes. This makes it

possible to:

- test and debug each small piece, before the entire system
is finished

- DISTRIBUTE the work to various programmers who can
work in PARALLEL to complete the system more quickly

- RE-USE old, reliable, proven modules (libraries) in
further projects

- make CHANGES more easily by improving individual
modules (classes) and then "pluggin-in" the improvements

D.3 Program development (20 hours) with JETS

Assessment
statement

Ivi

Teacher’s notes

D.3.1

Define the terms:
class, identifier,
primitive, instance
variable, parameter
variable, local
variable.

These are generally related to the object’s
data. See JETS.

JETS is a subset of Java, specifying the commands that IB
Comp Sci students must understand. They must be able to
read, trace, and write algorithms using standard Java, as
specified in JETS.

http://occ.ibo.org/ibis/documents/dp/gr5/computer_science/d_4_comsc_sup_1201_1a_e.pdf

D.3.2

Define the terms:
method, accessor,
mutator, constructor,
signature, return
value.

These are generally related to the object’s
actions. See JETS.

D.3.3 Define the terms: These are generally related to the OOP
private, protected, features described in D.2. See JETS.
public, extends,
static.

D.3.4 Describe the uses of In examination questions the primitive types
the primitive data will be limited to int, long, double, char and
types and the Boolean.
reference class MYP Mathematics: forms of numbers.
string.

D.3.5 [Construct code to Students may be asked to trace, explain or
implement construct algorithms using the concepts
assessment associated with the terms.
statements
D.3.1-D.3.4.

D.3.6 | Construct code Students may be asked to trace, explain or
examples related to construct algorithms using simple and
selection statements. compound if ... else constructs.

D.3.7 | Construct code Students may be asked to trace, explain or
examples related to construct algorithms using for, while or do ...
repetition while loops.
statements.

D.3.8 Construct code Students may be asked to trace, explain or

examples related to
static arrays.

construct algorithms using static arrays.

and moral
obligations of
programmers.

D.3.9 Discuss the features | 3 For example, use of UNICODE character
of modern sets.
programming INT When organizations interact, particularly
languages that on an international basis, there may be issues
enable of language differences.
internationalization.

D.3.10 [Discuss the ethical 3 | For example, adequate testing of products to

prevent the possibilities of commercial or
other damage. Acknowledging the work of
other programmers. The main aims of the
Open Source movement should be known.
S/E, AIM 8 An awareness of the ethical
considerations when developing new code.

HL Extension

D.4 Advanced program developm ent (15 hours)

Assessment Ivl | Teacher’s notes
statement

D.4.1 | Define the term 1 A method that INVOKES (calls) itself. That means the method
recursion. will contain it's own name as one of the commands.

D.4.2 | Describe the 2 | Students should understand that recursion A TREE is the standard example of a need for recursion.

application of
recursive algorithms.

can be applied to a small subset of

programming problems to produce elegant
solutions. Students should also understand
that recursive algorithms are rarely used in

At each node in the TREE, the nodes below it form a
SUB-TREE. Then the algorithm starts over at the current node
and recurses through the subtree. Afterward, it must RETURN
to the parent node and complete the previous copy of the

practice.
LINK Thinking abstractly, thinking
recursively.

algorithm.

In the real world of business programming, most tasks can be
completed ITERATIVELY (using loops), and they don't require
recursion. LISTS are LINEAR structures. 2D arrays are
effectively LINEAR, although they don't appear that way at
first. But we can TRAVERSE a 2D array using NESTED
LOOPS. Most standard business problems can be treated
effectively as a 2D array (as used in Excel).

IF we need to TRAVERSE an array by following NEIGHBORS
(e.g. in MineSweeper to count neighbors) then a RECURSIVE
method may still be required. Such problems cannot be
programmed with nested loops.

D.4.3 | Construct algorithms This is limited to a method that returns no practice standard algorithms, especially Tree Traversals
that use recursion. more than one result and contains either one | (in order, pre order, post order)
or two recursive calls.
LINK Connecting computational thinking and
program design.
D.4.4 | Trace recursive All steps and calls must be shown clearly. The TRACE usually looks like a tree, with each new recursive
algorithms. LINK Connecting computational thinking and | call creating a new node in the tree.
program design.
D.4.5 | Define the term object As typified by simple classes that are A Linked-List or a TREE contain NODE objects that point to

reference.

self-referential.

other NODE objects, so the pointers (next, leftChild, rightChild)
will be self-referential, e.g.

class TreeNode

{
String data;

TreeNode leftChild;
TreeNode rightChild;

}

D.4.6 | Construct algorithms In exams, this is probably only going to involve single pointers,
that use reference not binary trees.
mechanisms.

D.4.7 | Identify the features Students should understand the nature of an | An ADT (Abstract Data Type) "hides" it's complexity inside the
of the abstract data ADT—where no implementation details are Object / class. The programmer should be able to use the
type (ADT) list. known but the actions/methods are standard. | ADT successfully without knowing exactly HOW it does what it

does. Specific examples are : LinkedList and ArrayList (same
as Vector).

D.4.8 | Describe applications Students should understand that lists can be | Queue - waiting lines, printer queue (server)
of lists. used to represent stacks and queues. Stack - return values from methods, undo lists in applications,

history in a browser
These can be implemented in an ArrayList, by adding and
removing from the appropriate end(s)

D.4.9 | Construct algorithms Lists will be restricted to singly linked types. A STATIC implementation of a Linked-List means it is stored in
using a static Methods that should be known are add (head | an Array, together with appropriate "pointers" like FIRST and
implementation of a and tail), insert (in order), delete, list, LAST. Then there are actually no "links", but similar features
list. isEmpty, isFull. must be provided, e.g.:

- addAtTail

- addAtHead

- insert

- delete

- list (show all items)

- isEmpty (checkEmpty) and isFull (checkFull)
D.4.1 | Construct list Lists will be restricted to singly linked types. This is a DYNAMIC implementation, with a NODE class
0 algorithms using Methods that should be known are add (head | and a LinkedList ADT, containing approriate methods for

object references.

and tail), insert (in order), delete, list,
isEmpty, isFull.

adding, inserting and deleting NODES at specific locations.

and binary tree.

For example, they should know that a binary
tree can be used to efficiently store and
retrieve unique keys.

D.4.1 | Construct algorithms The classes are ArrayList and LinkedList. e.g. use these as ADTs. Don't need to doing any programming
1 using the standard Students should have a broad understanding | inside of these - just use the standard features.
library collections of the operation of these lists and their
included in JETS. interface (methods) but not of the internal
structure.
D.4.1 | Trace algorithms In examination questions, definitions of Be sure to also practice use pen and paper.
2 using the ArrayList and LinkedList methods will be
implementations given where necessary.
described in
assessment
statements
D.4.9-D.4.11.
D.4.1 | Explain the Students should understand that libraries see D.2.7
3 advantages of using provide convenient and reliable Specifically for ArrayList and LinkedList - it is very easy to
library collections. implementations of common programming make a programming mistake when dealing with references
tasks. (pointers). Libraries have been thoroughly debugged and are
probably more reliable than the code that normal programmers
could write. This also saves lots of time, and is sensible when
implementing STANDARD algorithsm, like searching and
sorting.
D.4.1 | Outline the features of Students should be able to provide diagrams, | Stack = LIFO, using PUSH and POP
4 ADT'’s stack, queue applications and descriptions of these ADTs.

Queue = FIFO, using ENQUEUE and DEQUEUE

Binary Tree = using LEFTCHILD, RIGHTCHILD and
traversals : in order, pre order, post order

Store and retrieve unique "keys" - like words for a spell-check
algorithm

D.4.1

Explain the
importance of style
and naming
conventions in code.

Students should understand that meaningful
identifiers, proper indentation and adequate
comments all improve the readability of code
for humans and thus save money, time and
effort in programming teams.

INT, AIM 5 The need to develop a common
“language” to enable collaboration across
international frontiers when resolving
problems.

Two main reasons for good style:
(1) enables someone else to read and understand your
code more easily and successfully

(2) enables you or anyone else to make changes and
improvements later

Good style includes:

- clear and consistent NAMING CONVENTION

- clear and consistent SPELLING (like camelCaps)
- clear and consistend INDENTATION

- lots of COMMENTS

