Computational thinking,
problem-solving and programming:
Introduction to programming

IB Computer Science

Content developed by

\C)\O Dartford Grammar School

Computer Science Department _"‘v“"

FOUNDED 1576

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL & SL 4.3 Overview

Organisation

Nature of programming languages

_ 3: Networks
4.3.1 State the fundamental operations of a computer

4.3.2 Distinguish between fundamental and compound operations of a computer

4.3.3 Explain the essential features of a computer language

4: Computational ¢
4.3.4 Explain the need for higher level languages inlei y—]
P g guag thinking =

4.3.5 Outline the need for a translation process from a higher level language to machine
executable code

5: Abstract data

Use of programming languages STUEIIES

4.3.6 Define the terms: variable, constant, operator, object

4.3.7 Define the operators =, ., <, <=, >, >=, mod, div
6: Resource

4.3.8 Analyse the use of variables, constants and operators in algorithms
management

4.3.9 Construct algorithms using loops, branching

4.3.10 Describe the characteristics and applications of a collection

4.3.11 Construct algorithms using the access methods of a collection 7: Control
LTy

4.3.12 Discuss the need for sub-programmes and collections within programmed solutions

4.3.13 Construct algorithms using predefined sub-programmes, one-dimensional arrays
and/or collections

Topic 4.3.12

Discuss the need for sub-programmes
and collections within programmed
solutions

4 ™\
Main Program

Module 1 Module 2

[\ ||/

func fune fune funec

7,
Advantages to modular design

Modular programming is an important and beneficial
approach to programming problems. They make program
development easier, and they can also help with future
development projects.

Key benefits/advantages:
Usefulness of reusable code

Eases program organization, both for the individual programmer,
team members

Makes future maintenance easier — you only have fix/update a
module, not the whole program

Manageable tasks

Breaking down a programming project into modules makes it
more manageable.

These individual modules are easier to design, implement
and test.

Then you can use these modules to construct the overall
program.

maain Brogram

[] q FEETEw bl | M
maodule 1 ' meodie 2 ' e 3

: H
o '
e e}

modulag e

mdula g o

I

L)1l

Distributed development

Modular programming allows distributed development.

By breaking down the problem into multiple tasks, different
developers can work in parallel.

And this will shorten the development time.

&
4
@ o Frga ©
e e, S
& °

]

ot
Code reusability

A program module can be reused in programs.

This is a convenient feature because it reduces redundant
code.

Modules can also be reused in future projects.

It is much easier to reuse a module than recreate program
logic from scratch.

Component

Component [«— Game
¢ Component
Component
Component
Component
Component ¢ po
\ Component

Program readability

Modular programming leads to more readable programs.
Modules can be implemented as user-defined functions.
A program that has plenty of functions is straightforward.

But a program with no functions can be very long and hard
to follow.

float4 pos : SV_POSITION;
float2 texCoord : TEXCOORD®;
float skin : TEXINDEX;
b5
- VertexShaderOutput main(VertexShaderInput input)

{
VertexShaderOutput output;

// Transform the vertex position into projected space.

float4 worldPos = mul(float4(input.pos, 1.0f), input.mTransform);
output.pos = mul(mul(worldPos, view), projection);
output.texCoord = input.texCoord;

output.skin = input.skin.x;

return output;

